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NONNEGATIVE SOLUTIONS FOR A LONG-WAVE UNSTABLE
THIN FILM EQUATION WITH CONVECTION*

MARINA CHUGUNOVAT, M. C. PUGH', AND R. M. TARANETS?

Abstract. We consider a nonlinear fourth-order degenerate parabolic partial differential equa-
tion that arises in modeling the dynamics of an incompressible thin liquid film on the outer surface
of a rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich
variety of qualitatively different flows. Depending on the initial data and the parameter values, we
prove the existence of nonnegative periodic weak solutions. In addition, we prove that these solu-
tions and their gradients cannot grow any faster than linearly in time; there cannot be a finite-time
blowup. Finally, we present numerical simulations of solutions.
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1. Introduction. We consider the dynamics of a viscous incompressible fluid
on the outer surface of a horizontal circular cylinder that is rotating around its axis
in the presence of gravity; see Figure 1.

If the cylinder is fully coated there is only one free boundary: where the liquid
meets the surrounding air. Otherwise, there is also a free boundary (or contact line)
where the air and liquid meet the cylinder’s surface.

The motion of the liquid film is governed by four physical effects: viscosity, gravity,
surface tension, and centrifugal forces. These are reflected in the following parame-
ters: R, the radius of the cylinder; w, its rate of rotation (assumed constant); g, the
acceleration due to gravity; v, the kinematic viscosity; p, the fluid’s density; and o,
the surface tension.

These parameters yield three independent dimensionless numbers: the Reynolds
number Re = (R?w)/v, v = g/(Rw?), and the Weber number We = (pR3*w?) /0.

We introduce the parameter ¢ = h/R, where h is the average thickness of the
liquid. The following limiting regime is considered as e — 0 [32, 33, 3, 29]:

(1.1) k=Ree® =0, xz%?—)cl, and p=~Ree? = ¢y,
where ¢; and ¢y are finite and nonzero.

One can model the flow using the full three-dimensional Navier—Stokes equations
with free boundaries: for @(x,y,z,t) in the region x € [~m,m), y € R}, and 2z €
(0, h(z,y,t)), where z is the angular variable, y is the axial variable, and h(z,y,t) is
the thickness of the fluid above the point (x,y) on the surface of the cylinder at time
t. This has been done by Pukhnachov [32, Theorem 1], who proved the existence and

*Received by the editors November 13, 2009; accepted for publication (in revised form) May 20,

2010; published electronically August 10, 2010.
http://www.siam.org/journals/sima/42-4/77706.html

TDepartment of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario
M5S 2E4, Canada (chugunom@math.utoronto.ca, mpugh@math.utoronto.ca). The work of the first
author was supported by a NSERC postdoctoral fellowship.

fInstitute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine,
Donetsk, 83114 Ukraine (taranets_r@Qyahoo.com).

1826

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



THIN FILM EQUATION WITH CONVECTION 1827

Fic. 1. Liquid film on the outer surface of a rotating horizontal cylinder in the presence of
gravity.

uniqueness of fully coating steady states (no contact line is present) if 7 is not too
large. We know of no results for the affiliated initial value problem.

In this physical regime, if one also makes a long-wave approximation (the thick-
ness of the coating fluid is smaller than the radius of the cylinder), and if one fur-
ther assumes that the rotation rate is low (or the viscosity is large), then the three-
dimensional Navier—Stokes equations with free boundary can be approximated by
a fourth-order degenerate partial differential equation (PDE) for the film thickness
h(z,y,t). This is done by averaging the fluid flow in the direction normal to the cylin-
der [32, 33]. If one further assumes that the flow is independent of the axial variable,
y, then this results in a PDE in one dimension for hA(z,t).

In his pioneering 1977 article about syrup rings on a rotating roller, Moffatt
neglected the effect of surface tension (i.e., We™* = 0 = ), assumed the flow was
uniform in the axial variable, and derived [29] the following model for the thin film
thickness:

(1.2) he + (b — &h® cos(z)) =0,
where p is given in (1.1) and
x € [-m,7w], t>0, his2r-periodicin z.

Pukhnachov’s 1977 article [32] gives the first model that takes into account surface
tension:

(1.3) he + (h — £0% cos(2))e + % (B® (he + hoaa)), =0,
where p and x are given in (1.1) and
x € [-m,7], t>0, his2r-periodicin z.

This model assumes a no-slip boundary condition at the liquid/solid interface. For
a solution to (1.2) or (1.3) to be physically relevant, either h is strictly positive (the
cylinder is fully coated) or h is nonnegative (the cylinder is wet in some region and
dry in others).

Weidner, Schwartz, and Eres [44] present modeling and numerics for a gravity
driven, zero rotation, thin coating flow on a horizontal cylinder; Schwartz and Weid-
ner [36] consider this flow on a general curved surface. Evans, Schwartz, and Roy [22]
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1828 MARINA CHUGUNOVA, M. C. PUGH, AND R. M. TARANETS

present modeling and numerics for a gravity driven thin film flow on a rotating hori-
zontal cylinder; Benjamin, Pritchard, and Tavener [4] present computation, modeling,
and experiments for this flow inside a cylinder. For additional information about stud-
ies of thin liquid films, we refer readers to the excellent survey articles by Oron, Davis,
and Bankoff [31] and by Craster and Matar [18].

Surprisingly little is understood about the initial value problem for (1.3). Bernis
and Friedman [8] were the first to prove the existence of nonnegative weak solutions
for nonnegative initial data for the related fourth-order nonlinear degenerate parabolic
PDE

where f(h) = |h|™ fo(h), fo(h) > 0,n > 1.

Unlike for second-order parabolic equations, there is no comparison principle for
(1.4). For example, if the initial data is bounded below by 1, this does not ensure that
the resulting solution will also be bounded below by 1. However, the degeneracy f(h)
in (1.4) is key in ensuring that, given nonnegative initial data, there is a nonnegative
solution.

Lower-order terms can be added to (1.4) to model additional physical effects. For
example,

(1.5) hi + (f(h) haza)e — (g(R)hs)z = 0,

where g(h) > 0 for h # 0. Equation (1.5) can model a thin liquid film on a horizontal
surface with gravity acting towards the surface. If this surface is not horizontal, then
the dynamics can be modeled by

(1.6) hi + (h"(a —bhy + hyze))e =0, a>0, b>0.

The constant a in the first-order term vanishes as the surface becomes more and more
horizontal. If the thin film of liquid is on a horizontal surface with gravity acting
away from the surface, then the thin film dynamics can be modeled by

In (1.5) and (1.6), the second-order term is stabilizing: if one linearizes the equa-
tion about a constant, positive steady state, then the presence of the second-order
term increases how quickly perturbations decay in time. In (1.7), the second-order
term is destabilizing: the linearized equation can have some long-wavelength pertur-
bations that grow in time. For this reason, we refer to (1.7) as “long-wave unstable.”
The long-wave stable equations (1.5) and (1.6) have similar dynamics to those of (1.4);
however, the long-wave unstable equation (1.7) can have nontrivial exact solutions and
can have finite-time blowup (h(z*,t) T 0o as t T t* < 00).

In all cases, the fourth-order term makes it harder to prove desirable properties
such as the short-time (or long-time) existence of nonnegative solutions given non-
negative initial data, compactly supported initial data yielding compactly supported
solutions (finite speed of propagation), and uniqueness. Indeed, there are counterex-
amples to uniqueness of weak solutions [5]. Results about existence and long-time
behavior for solutions of (1.5) can be found in [10]; analogous results for (1.6) are
in [23]. See [12, 13] for results about existence, finite speed of propagation, and
finite-time blowup for (1.7).
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In this paper we study the existence of weak solutions of the thin film equation
(1.8) he + (|h|3(a0 hpze +ar1hy + agw'(x)))w + azhg = 0,

where a1, ag, ag are arbitrary constants, constant ag > 0, and w(z) is periodic. Equa-
tion (1.3) is a special case of (1.8). The sign of a; determines whether (1.8) is long-
wave unstable. Also, the coefficient of the convection term az(w’(z)|h|?), can depend
on space and will change sign if asw’(z) # 0. The cubic nonlinearity |h|> in (1.8)
arises naturally in models of thin liquid films with no-slip boundary conditions at the
liquid/solid interface. Our methods generalize naturally to f(h) = |h|™; we refer the
reader to [5, 8, 11] for the types of results expected.

Given nonnegative initial data that satisfies some reasonable conditions, we prove
long-time existence of nonnegative periodic generalized weak solutions to the initial
value problem for (1.8). We start by using energy methods to prove short-time exis-
tence of a weak solution and find an explicit lower bound on the time of existence. A
generalization and sharpening of the method used in [12] allows us to prove that the
H' norm of the constructed solution can grow at most linearly in time, precluding
the possibility of a finite-time blowup. This H' control, combined with the explicit
lower bound on the (short) time of existence, allows us to continue the weak solution
in time, extending the short-time result to a long-time result.

If ag = 0 or ag = 0 in (1.8), then solutions will be uniformly bounded for all time.
If as # 0 and as # 0, it is natural to ask if the nonlinear advection term could cause
finite-time blowup (h(z*,t) T co as ¢t T t*). Such finite-time blowup is impossible by
the linear-in-time bound on H'!, but we have not ruled out that a solution might grow
in an unbounded manner as time goes to infinity.

In [14, 19], the authors consider the multidimensional analogue of (1.4),

(1.9) he+ V- (|h|"VAR) =0

for h(x,t), where z € Q C RY with N = 2,3. Depending on the sign of A’, if g = 0,
then equation

(1.10) he +V - (f(R)VAh + VA(h)) = g(t, z, h, Vh)

on § is the multidimensional analogue of (1.5) or (1.7). In [20], the authors consider
the long-wave stable case with ¢ = 0 and power-law coefficients, f(h) = |h|™ and
A’(h) = —|h|™. In [24], the author considers the Neumann problem for both the long-
wave stable and unstable cases with the assumption that f(h) > 0 has power-law-like
behavior near h = 0, that |A’(h)| is dominated by f(h) (specifically |A’(h)| < dof(h)
for some dy), and that the source/sink term g(¢,x,h) grows no faster than linearly
in h. In [39, 40, 42], the authors consider the Neumann problem for the long-wave
stable case of (1.10) with power-law coefficients and a larger class of source terms:
g(t,z,h) ~ |h*Lh with A > 0. In [37, 41], the same authors consider the long-wave
stable equation with power-law coefficients but with g(h) = @-Vb(h), where b(z) ~ z*
and @ € RY: g models advective effects. They consider the problem both on R and
on a bounded domain 2.

All of these works on (1.9) and (1.10) construct nonnegative weak solutions from
nonnegative initial data and address qualitative questions such as dependence on ex-
ponents n, m, and A, on dimension N, speed of propagation of the support and of
perturbations, exact asymptotics of the motion of the support, and positivity proper-
ties. We note that the works [37, 39, 40, 41, 42] also construct solutions with higher
regularity properties (“strong” solutions).
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Finally, we refer readers to the technical report [17], which presents the results
of this article, and some additional results, along with more extensive discussion,
calculations, and simulations.

2. Steady state solutions. Smooth steady state solutions, h(z,t) = h(x), of
(1.3) satisfy

(2.1) h—81° cos(z) + X (h® (ha + haas)) = ¢,

where ¢ is a constant of integration that corresponds to the dimensionless mass flux.
In the zero surface tension case (x = 0), steady states satisfy

(2.2) h— &h? cos(z) = q.

Such steady states were first studied by Johnson [25] and Moffatt [29]. Johnson
proved that there are positive, unique, smooth steady states if and only if the flux
is not too large: 0 < ¢ < 2/(3y/;t). These steady states are neutrally stable [30].
Smooth, positive steady states in the presence of surface tension have been studied by
a number of authors. One striking computational result [2] is that for certain values
of x and g there can be nonuniqueness.

These nonunique steady states were numerically discovered via an elegant com-
bination of asymptotics and a two-parameter (mass and flux) continuation method
[2, Figure 14]. To start the continuation method, earlier work [3] on the regime in
which viscous forces dominate gravity was used. There, asymptotics show that for
small fluxes the steady state is close to ¢+ 1/3¢> cos(x) +0O(g®), providing a good first
guess for the iteration used to find the steady state. The bifurcation diagram shown
in Figure 14 of [2] also suggests that the Moffatt model (1.2) can be considered as the
limit of the Pukhnachov model (1.3) as surface tension goes to zero (x — 0).

Pukhnachov proved [34] a nonexistence result: no positive steady states exist if
q > 2¢/3/p >~ 3.464/,/in. We improve this, proving that no such solution exists if
q>2/3/2/p~0.943/ /1.

PRrROPOSITION 2.1. There does not exist a strictly positive 2m-periodic solution
h(zx) of (2.1) if ¢ > 2/3+/2/p.

Proof of Proposition 2.1. Following Pukhnachov, we start by rescaling the flux to
1 by introducing y(z) = h(z)/q and introducing the parameters v = XTq?’ and 8 = q%“.
Equation (2.1) transforms into

(2.3) v(y" +y') = Beos(x) — y% + y%

The solution y is written as y(x) = ag + a; cos(x) + azsin(z) + v(x), where v(x) L
span{1, cos(z),sin(z)} and satisfies

(2.4) y(" ") = ﬁcos(x)—ﬁ—i—ﬁ.

A solution v exists only if the right-hand side of (2.4) is orthogonal to span{1, cos(x),
sin(x)}. As a result,

(2.5) /_: (riy - U(w)s) dx =0, /_: (riy - y(i)s) cos(x) dr = 7 f3.

It follows from (2.5) that 78 < f >1 o (14 cos(z)) do < 5= 2. This shows that if
there is a positive steady state, then B < 8/27. Recalling the definition of 5, there is
no steady state if ¢ > 2/3 \/Q/M. 0
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The proof also holds in the case of zero surface tension x = v = 0, and so it
is natural that the bound 2/3+/2/p is larger than 2/(3,/1) (the bound found by
Johnson and Moffatt). Also, we note numerical simulations that suggest nonexistence
of a positive steady state if ¢ > 0.854 when p = 1 for a large range of surface tension
values [26, p. 61]; our bound of 0.943 is not too far off from this.

3. Short-time existence and regularity of solutions. We are interested
in the existence of nonnegative generalized weak solutions to the following initial-
boundary value problem:

(3.1) he + (f(h)(aohgzs + a1hy + acw'(2))), + ashy =0 in Qr,
(3.2) (P)q Zh(—q,t) = 22(q,t) for t > 0,i=0,3,
(3.3) h(z,0) = ho(z) > 0,

where f(h) = |h|?, h = h(z,t), Q = (—a,a), and Q7 = Q x (0,7T). Note that rather
than considering the interval (—a, a) with boundary conditions (3.2), one can equally
as well consider the problem on the circle S'; our methods and results would apply
here too. Recall that aj, a2, and as in (3.1) are arbitrary constants; ag is required to
be positive. The function w in (3.1) is assumed to satisfy

(3.4) w € C*TY(Q) for some 0 < y < 1, %;“j (—a) = %;13 (a) for i =0,2.

We consider a generalized weak solution in the following sense [5, 6].
DEFINITION 3.1. A generalized weak solution of problem (P) is a function h
satisfying

(3.5) he G2 (@) n L0, T; HY(Q)),
(3.6) he € L*(0,T; (H'(Q))"),
(3.7) he Cri(P), VF(h) (aohess + arthy + asw’) € L*(P),

where P = Qr \ ({h =0} U {t = 0}) and h satisfies (3.1) in the following sense:

T
/O (hi(-, 1), 0) dt—é/f(h)(aohmm+a1hz+a2w (@) dadt

(3.8) — a3 / / hey dadt = 0
Qr

for all $ € CH(Qr) with ¢(—a,-) = ¢(a,-);

(3.9) h(-,t) = h(-,0) = ho pointwise and strongly in L?(Q) ast — 0,

(3.10) h(—a,t) = h(a,t) Vt € [0,T] and 28 (—a,t) = Lh(a,t)

fori=1,3 at all points of the lateral boundary where {h # 0}.

Because the second term of (3.8) has an integral over P rather than over Qr, the
generalized weak solution is “weaker” than a standard weak solution. Also note that
the first term of (3.8) uses hy € L%(0,T; (H'(Q))’); this is different from the definition
of weak solution first introduced by Bernis and Friedman [8]; there, the first term was
the integral of h¢; integrated over Qr.
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We first prove the short-time existence of a generalized weak solution and then
prove that it can have additional regularity. In section 4 we prove additional control
for the H' norm which then allows us to prove long-time existence.

THEOREM 1 (existence). Let the nonnegative initial data hg € HY(Q) satisfy

1
(311) /{; oo (@) dr < o0,

and either (1) ho(—a) = ho(a) = 0 or (2) ho(—a) = ho(a) # 0 and %if{’(—a) =

%iwh{) (a) holds for i = 1,3. Then for some time Tj,c > O there exists a nonnegative

generalized weak solution, h, on Qr,,. in the sense of Definition 3.1. Furthermore,

(3.12) h € L*(0, Tioe; H*(Q)).
Let

(3.13) &o(T) := %/(aohi(x,T) —a1h?(z,T) — 2a0w(z)h(x, T)) dx.
Q
Then the weak solution satisfies

(3.14) €0(Tioe) + // B3 (aohaee + a1hy + agw’)? de dt < €0(0) + K Tioe,

{h>0}
where K = |agas||w'|| oM < oco. The time of existence, Tjoc, is determined by ag,
ai, az, w', |Q, and hg.

We note that the analogue of Theorem 4.2 in [8] also holds: there exists a non-
negative weak solution with the integral formulation

T
(3.15) / (e, 1), ) dt + ao / / (3h2hahpatrs + B hasts) dudt
0 Qr
— // (a1h’hg + azh®w’ + ash) ¢, dwdt = 0.
Qr

THEOREM 2 (regularity). If the initial data from Theorem 1 also satisfies
(3.16) / hoy ! (x) dz < oo
Q

for some —1/2 < a < 1, a # 0, then there exists 0 < Tl(oo;) < Tioe such that there
exists a nonnegative generalized weak solution that satisfies Theorem 1 and has the
extra reqularity

a+2

+ a+2
hz e L20,T\;H*Q)) and h % € L20,T\;W}(Q)).

loc loc

The solutions from Theorem 2 are often called “strong” solutions in the thin film
literature.

If the initial data satisfy (3.16), then the added regularity from Theorem 2 allows
one to prove the existence of nonnegative solutions with an integral formulation [11]
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that is similar to that of (3.15), except that the second integral is replaced by the
results of one more integration by parts (there are no hy, terms).

If one considers problem (P) with nonlinearity f(h) = |h|™, then for n € (0,3),
Theorems 1 and 2 would hold for general nonnegative initial data hg € H(Q). If
n > 3, then these theorems would also hold if the initial data satisfy the analogues
of conditions (3.11) and (3.16), [h3™" dz < oo and [h§™?"" dz < oo, respectively.
We refer the reader to [11, 5] for the techniques that would be needed to generalize
Theorems 1 and 2 in this way.

The proofs of Theorems 1 and 2 rely on approximate solutions and a priori control
of their “energy” and “entropy” at all moments in time. The energy at time T is the
first-order! functional (3.13). Similarly, the entropies at time T" are the zeroth-order
functionals (3.11) and (3.16) evaluated for h(-,T).

Bernis and Friedman [8] were the first to introduce this energy—entropy approach
for thin film equations; they proved the existence of generalized weak solutions for
ht = —(h"hyes ), using the energy fhi and the entropy fh2*". Since then, there
has been great development in energy—entropy methods.

For example, Bontat et al. [16] consider

he = — (hnhm + ah™  hyhg, + SR (hw)B)

as well its analogue in two and three space dimensions.
Rakotoson, Rakotoson, and Verbeke [35] consider

for g > 0.

Both works use the energy [ h2 and an entropy J G(h). Unlike Bernis and Fried-
man’s entropy, the function G(y) has a piecewise definition for y > 0 and y < 0.

In [43], Ulusoy considers

he=— (1" (0= D022 haa) )

x

which has a gradient flow structure based on the energy [ |h,|P. Using this and the
entropy [ h2~™, the author proves the existence of nonnegative weak solutions for

p#2

Ansini and Giacomelli [1] consider the doubly nonlinear thin film equation
ht - - (|h|n|hzzz|p_2hrrr)z

with p > 2 and n € (0,p + 1). For p > 2, they do not have an entropy to work with.
Instead, they make subtle use of the energy [h2 and the rate of energy dissipation
aided by Bernis’ interpolation inequalities [7].

3.1. Regularized problem. Given §,e > 0, a regularized parabolic problem,
similar to that of Bernis and Friedman [8], is considered:

(3.17) ht + (fse(h) (aohaws + arhy + axw'(z)))  + ashy =0,
(3.18) (Poc) Zh(—q,t) = Zh(a,t) for t > 0,i=0,3,
(3.19) h(z,0) = ho,(z),

IWe call the functional first-order because the integrand depends on the first derivative of h.
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where

(3.20) fse(2) = fe(z) + 0=z +0 VzeRL §>0, >0

The § > 0 in (3.20) makes the problem (3.17) regular (i.e., uniformly parabolic).
The parameter € is an approximating parameter which has the effect of increasing
the degeneracy from f(h) ~ |h|? to f-(h) ~ h*. The nonnegative initial data, ho, is
approximated via

ho + €% < ho. € C*(Q) for some 6 € (0,2/5) and ~ from (3.4),
(3.21) Ohos (—a) = 2Mos (q) for i = 0,3,
ho.e — ho strongly in H'(Q) as ¢ — 0.

The role of ¢ in (3.21) is to smooth the initial data from H*(Q) to C**7(Q) and to
“lift” the initial data, making it positive.
By Eidel'man [21, Theorem 6.3, p. 302], the regularized problem has a unique

classical solution hs. € C’;lj%pﬂ/ 4(Q x [0,7s2]) for some time 75. > 0. For any

fixed value of § and ¢, by Eidel'man [21, Theorem 9.3, p. 316] if one can prove a
uniform in time a priori bound |hse(x,t)] < Ase < oo for some longer time interval
[0, Tioc,6¢] (Tioc,5e > Tse) and for all z € , then Schauder-type interior estimates [21,
Corollary 2, p. 213] imply that the solution hs. can be continued in time to be in
C;l:";'y’l+7/4(Q X [O, Tloaéa])'

Although the solution hs. is initially positive, there is no guarantee that it will
remain nonnegative. The goal is to take 6 — 0, ¢ — 0 in such a way that (1)
Tioc,6e = Tioc > 0, (2) the solutions hse converge to a (nonnegative) limit, &, which is
a generalized weak solution, and (3) h inherits certain a priori bounds. This is done
by proving various a priori estimates for hs. that are uniform in § and ¢ and hold on
a time interval [0, T},c] that is independent of § and . As a result, {hs.} will be a
uniformly bounded and equicontinuous (in the C;)/tz’l/ s norm) family of functions in
Q x [0, T}oc]. Taking § — 0 will result in a family of functions {h.} that are classical,
positive, unique solutions to the regularized problem with § = 0. Taking ¢ — 0 will
then result in the desired generalized weak solution h. This last step is where the
possibility of nonunique weak solutions arise; see [5] for simple examples of how such
constructions applied to hy = —(|h|"hgza ). can result in two different solutions arising
from the same initial data.

3.2. A priori estimates. Our first task is to derive a priori estimates for classi-
cal solutions of (3.17)—(3.21). The lemmas in this section are proved in Appendix A.

We use an integral quantity based on a function Gs. chosen so that
(3.22) GS.(z) = fas;(z) and Gs:(z) > 0.

This is analogous to the “entropy” function first introduced by Bernis and Friedman
[8].

LEMMA 3.1. There exists 69 > 0, €9 > 0, and time Tjoc > 0 such that if § € [0, o),
€ € (0,€0), if hse is a classical solution of the problem (3.17)—(3.21) with initial data
ho,e, and if hoe satisfies (3.21) and is built from a nonnegative function hgy that
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satisfies the hypotheses of Theorem 1, then for any T € [0,Toc] the solution hse
satisfies

(3.23) /Q {hf;m(x,T) + Lol (% + 25) Gise(hse(z, T))} dx

+ ag // fgs(h(;s)hgaﬂgm dedt < Ky < o0,
Qr

(3.24) / Gse(hse(z,T)) dz + ag / / ez dodt < Ko < 00,
Q
Qr

and the energy Esc(t) (see (3.13)) satisfies

(3.25) euﬂ+/lmmmwmmm+mmm+@wfmm<@+ﬁm
Qr

where K3 = |agas| || w'||ocM < 0o. The time Tioe and the constants Ky, Ko, Cy, and
K3 are independent of § and €.

The existence of dg, €g, Tjoc, K1, K2, and K3 is constructive; how to find them
and what quantities determine them is shown in Appendix A.

Lemma 3.1 yields uniform-in-d-and-¢ bounds for [h3_ ., [Gsc(hs), [[ h}

de,xx’
and [ fse(hse)R3. 4y However, these bounds are found in a different manner than
in earlier work for the equation hy = —(|h|"hgzs)s, for example. Although inequal-

ity (3.24) is unchanged, inequality (3.23) has an extra term involving Gs.. In the
proof, this term was introduced to control additional, lower-order terms. This idea
of a “blended” ||hy||2-entropy bound was first introduced by Shishkov and Taranets
especially for long-wave stable thin film equations with convection [37].

The final a priori bound uses the following functions, parametrized by «,

a—1 a—2 a
(3.26) Gga) (2) = (a_zl)(a_g) + (afg)(a_z); (Gga) (Z))H = f:—(z)

LEMMA 3.2. Assume e¢ and Tjo. are from Lemma 3.1, § = 0, and € € (0,&q).
Assume he is a positive, classical solution of the problem (3.17)—(3.21) with initial
data ho e satisfying Lemma 3.1. Fiz o € (—1/2,1) with a # 0. If the initial data ho
s built from hg which also satisfies

(3.27) /th‘_l(x) dz < oo,

) with 0 < 6(()a) <egg and 0 < 7 < Tloe such that

then there exists 6(()a) and T Too

loc

(3.28) /Q (12 (2.T) + G (he(x,T))} da

+ / / [BRERZ ., +vhE2RE ] dodt < Ky < 00
Qr

holds for all T € [O,Tl(ooé)] and some constant K4 that is determined by a, €9, ag, a1,

az, w', Q, and hg. Here,

P L if € (0,1),  Japeiz) if € (0,1),
a2 if a € (=1/2,0), apIF200=0) i o € (—1/2,0).
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Furthermore,

at2 at2
(3.29) he?2 € L*(0,Tioe; H*(Q)) and he* € L*(0, Tioe; Wi(Q))

with a uniform-in-¢ bound.

The a-entropy, [ Géa)(h) dx, was first introduced for & = —1/2 in [9], and an a
priori bound like that of Lemma 3.2 and regularity results like those of Theorem 2
were found simultaneously and independently in [5] and [11].

3.3. Proof of existence and regularity of solutions. Bound (3.23) yields
uniform L°° control for classical solutions hs., allowing the time of existence Tjoc s5¢
to be taken as Tj,. for all 6 € (0,d9) and € € (0,e9). The existence theory starts
by constructing a classical solution hs. on [0,7T},] that satisfies the hypotheses of
Lemma 3.1 if 6 € (0,dp) and € € (0,¢0). The regularizing parameter, ¢, is taken to
zero, and one proves that there is a limit h. and that h. is a generalized weak solution.
One then proves additional regularity for h., specifically that it is strictly positive,
classical, and unique. It then follows that the a priori bounds given by Lemmas 3.1
and 3.2 apply to h.. This allows us to take the approximating parameter, €, to zero
and construct the desired generalized weak solution of Theorems 1 and 2.

LEMMA 3.3. Assume that the initial data ho . satisfies (3.21) and is built from
a nomnegative function hg that satisfies the hypotheses of Theorem 1. Fiz § = 0
and € € (0,e0), where g9 is from Lemma 3.1. Then there exists a unique, positive,
classical solution he on [0, Tioc] of problem (Poe) (see (3.17)—(3.21)) with initial data
ho,e, where Tjoc is the time from Lemma 3.1.

Proof. Arguing the same way as Bernis and Friedman [8] one can construct a
generalized weak solution h.. We now prove that this A, is a strictly positive, classical,
unique solution. This uses the entropy | Gsc(hse) and the a priori bound (3.24). This
bound is, up to the coefficient ag, identical to the a priori bound (4.17) in [8]. By
construction, the initial data ho. is positive (see (3.21)); hence [ Gc(ho) dz < .
Also, by construction f.(z) ~ z% for z < 1. This implies that the generalized weak
solution h. is strictly positive [8, Theorem 4.1]. Because the initial data ho. is
in C*7(Q0), it follows that h. is a classical solution in Cy, (Qr,.). The proof of
Theorem 4.1 in [8] then implies that h. is unique. O

Proof of Theorem 1. As in the proof of Lemma 3.3, following [8], there is a
subsequence {ej} such that h., converges uniformly to a function h € C’i)/f’l/ ® which
is a generalized weak solution in the sense of Definition 3.1 with f(h) = |h|3.

The initial data are assumed to have finite entropy: | 1/ho < co. This, combined
with f(h) = |h|?, implies that the generalized weak solution h is nonnegative and the
set of points {h = 0} in Qr,,, has zero measure [8, Theorem 4.1].

To prove (3.14), start by taking T' = T}, in the a priori bound (3.25). As e — 0,
the right-hand side of (3.25) is unchanged. First, consider the e — 0 limit of

gsk (noc) - % / aohg,mw(% z1loc) - alhgk (xv z1loc) - 2a2w($)hsk (xv z1loc)dx-
Q

By the uniform convergence of he, to h, the second and third terms in the en-
ergy converge strongly as €, — 0. The bound (3.25) yields a uniform bound on
{Jq P2, (2, Tioc) dx}. Taking a further refinement of {ex} yields he, (-, Tioc) con-
verging weakly in L?(). In a Hilbert space, the norm of the weak limit is less
than or equal to the liminf of the norms of the functions in the sequence; hence
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E0(Tioc) < liminf., &z, (Tioc). A uniform bound on [[ fo(he) (aohe,zaz + - )V da
also follows from (3.25). Hence +/fe, (he,) (@ohe, zoz + - -) converges weakly in
L?(Qr7,,,), after taking a further subsequence. It suffices to determine the weak limit
up to a set of measure zero. Because h > 0 and {h = 0} has measure zero, it suffices
to determine the weak limit on {h > 0}.

The regularity theory for parabolic equations allows one to argue that h € C’ijtl (P),
and the weak limit is h3/2 (aghgzs + ) on {h > 0}. Using that (1) the norm of the
weak limit is less than or equal to the liminf of the norms of the functions in the
sequence and that (2) the liminf of a sum is greater than or equal to the sum of the
lim infs results in the desired bound (3.14).

It follows from (3.24) that he, .. converges weakly to some v in L*(Qq,,), com-
bining with strong convergence in L2(0,T; H*(Q)) of he, to h by Lemma B.1, and
with the definition of weak derivative, we obtain that v = hy, and h € L?(0, Tioc;
H?2(€)), which implies (3.12). Hence h.; — h; weakly in L?(0,T; (H())’), which
implies (3.6). By Lemma B.2 we also have h € C([0, Tioc), L2(2)). O

Proof of Theorem 2. Fix «a € (—1/2,1). The initial data hg is assumed to have
finite entropy [ Géa)(ho(x)) dx < oo; hence Lemma 3.2 holds for the approximate
solutions {h., }, where this sequence of approximate solutions is assumed to be the
one at the end of the proof of Theorem 1. By (3.29),

at2
{hs,f } is uniformly bounded in e in L*(0, Tjoc; H(R))
and
at2
{hgk‘l } is uniformly bounded in e in L%(0, Tjoc; Wi (€2)).

Taking a further subsequence in {ex}, it follows from the proof of [19, Lemma 2.5,

p. 330] that these sequences converge weakly in L2(0,T},.; H?(Q2)) and L?(0, Tioc;
a+2 a+2

WE(Q)) toh 2 and b~ 4 | respectively. O

4. Long-time existence of solutions.
LEMMA 4.1. Let h € H'(Q) be a nonnegative function and [, h(x)dx = M. Then

2 4 3 2
(4.1) 1h]|72(q) < 63 M3 (/Q hZ dx) + 147
Note that by taking h to be a constant function, one finds that the constant

M?/|Q| in (4.1) is sharp.
Proof. Let v =h — M/|}]. By (A.3),

2
el < (33 ( |2 dx)

W=
ST

([

Hence,

2
1All72) < (3)3
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Lemma 4.1 and the bound (3.14) are used to prove H! control of the generalized
weak solution constructed in Theorem 1.
LEMMA 4.2. Let h be the generalized solution of Theorem 1. Then

(42) % Hh('aT‘lOc)H?{l(Q) S 80(0)+K1—‘loc+K37
where Eo(0) is defined in 0, K = |agas]||w'| M, an
here £0(0) is defined in (3.13), M = [ h "NlowM, and
_ fleallwlert Fao+an <0,
’ |a]||w|| oM + M? (2‘/6(53/2—’:1) + ag‘?ﬁl) otherwise.

Note that if the evolution is missing either linear or nonlinear advection (az = 0
or w' =0 or az = 0), then Lemma 4.2 provides a uniform-in-time upper bound for

2 (s Tioe) || 11
For (1.3), which models the flow of a thin film of liquid on the outside of a rotating
cylinder, one has ap = a; = %, a2 = —%, a3 = 1, w(z) = sinz, and |Q| = 27. In this

case, the H! bound (4.2) becomes
1A, Troe) I () < €0(0) + 5CTioe + 4 M + M? (5 /X + £5) ,

where 2€0(0) = [(x/3 (h§ . — h§) +2p/3 sin(z) ho )dz. The H' bound (4.2) actually
holds true for all times for which h is strictly positive. Recalling the definition (1.1) of
X, one sees that the H! control is lost as x — 0 (i.e., as o/(vpRw) — 0), for example,
in the zero surface tension limit.

Proof. By (3.13),

/thT ‘“/thTda:—l—az/ha:T

The linear-in-time bound (3.14) on &p(T}ec) then implies
43) BTl < 0(0) + K Tioe+ 2524 [ 12 dat faol 21

with K = |azas|||w'||ec M

Case 1. ap+ a1 < 0. The third term on the right-hand side of (4.3) is nonpositive
and can be removed. The desired bound (4.2) follows immediately.

Case 2. ap + a1 > 0. By Lemma 4.1 and Young’s inequality

1

2 4
a042ra1 ‘/QhZ dx < a042ra1 63M3 </ h d$> + 1‘\62'

a a, a 3/2 a, a
(4.4) < T"/ﬂhi(x,TloC) dz + M? (2«6(3%n + %F)'

Using this in (4.3), the desired bound (4.2) follows immediately. O

This H' control in time of the generalized solution is now used to extend the
short-time existence result of Theorem 1 to a long-time existence result.

THEOREM 3. Let T, be an arbitrary positive finite number. The generalized weak
solution h of Theorem 1 can be continued in time from [0, Tjoc] to [0,Tg] in such a
way that h is also a generalized weak solution and satisfies all the bounds of Theorem
1 (with Tioe replaced by T, ).
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Similarly, the short-time existence of strong solutions (see Theorem 2) can be
extended to a long-time existence.

Proof. To construct a weak solution up to time T}, one applies the local existence
theory iteratively, taking the solution at the final time of the current time interval as
initial data for the next time interval.

Introduce the times

N-1
(4.5) 0=Th<Ty<Ty<---<Ty<--, where Ty:=> Thic

n=0

and T), joc is the interval of existence (A.12) for a solution with initial data h(-,T,):

-2
(4.6) Thtoe == ﬁmin{l, </ h3(x, Tn) 4+ 22 Go(h(x, Ty)) dx) }
Q

The proof proceeds by contradiction. Assume there exists initial data hg satisfying
the hypotheses of Theorem 1, which results in a weak solution that cannot be extended
arbitrarily in time:

oo
Y Thioe=T"<o0o = lim T} = 0.
=0 n—oo

From the definition (4.6) of T}, joc, this implies
(4.7) lim (R (2, Tp) + 22 Go(h(x, Ty))) do = oo.
n oo Q

By (4.2) and (3.14),

%/ hi(xaTn) dZII S 8O(zjn—l) + KTn—l,loc + KS;
Q

Combining these,
@ A h2(z,T,) dx < Eo(Tn—2) + K (Tn—2.10c + Tn-1.10c) + K3.
Continuing in this way,
(4.8) o i h2(x,T,) dz < £0(0) + K T, + K.
By assumption, T, — T* < oo as n — oo; hence [ h2(z,T,)dz remains bounded.

Assumption (4.7) then implies that [ Go(h(z,T,)) dz — oo as n — co.
To continue, return to the approximate solutions h.. By (A.8),

(4.9) /Q Go(he (2, Tp.)) da < /Q o, Ty_1.0)) da

Tn,e
—1—05/ max{l,/ hZ (x,T) dx} dT.
Tnfl,e Q '
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Using (3.25), one proves the analogue of (4.2) for all T' € [0,Tjoc,c] and then the
analogue of (4.8) for all T' € [0, T, c]. Using this bound,

n,e Tn,s
/ /h ) dedT < = / E(0)+ KT+ K3dT
Thn-1,e Trn-1,
(410) == aio [85(0) + KB + % (Tn—l,s + Tn,s)} Tn—l,loc,s-

Replacing K3 by a larger value if necessary and using (4.10) in (4.9),

(4.11) /G (2, Tn)) da

/G ZIJ Tn 16)) dﬂ?—F(OZ—FB( n— 15+Tn5)) Tn—l,loc,s

for some « and § which are fixed values that depend on ||, the coefficients of the
PDE, and (possibly) on the initial data hg.. Taking e — 0 in the sequence {e}
that was used to construct h yields

(4.12) / Go(h(w, Tn))dz < / Golh(@, Tp_1))dz + (@ + B(Toor + T)) To1.10c-
Q Q
Applying (4.12) iteratively and using that T}, < T*,
(4.13) / Go(h(w, T)) da < / Golho(x)) dz + (a+ B2T*) T,
Q Q

Hence [ Go(h(z,T,))dz < co as n — oo, finishing the proof. O

Under certain conditions, a bound closely related to (4.2) implies that if the
solution of Theorem 1 is initially constant, then it will remain constant for all time.

THEOREM 4. Assume the coefficients a1 and as in (1.8) satisfy ax > 0, az = 0,
and |Q? < ag/la1|. If the initial data are constant, hg = C > 0, then the solution of
Theorem 1 satisfies h(z,t) = C for all z € Q and all t > 0.

The hypotheses of Theorem 4 correspond to the following: the equation is long-
wave unstable (a; > 0), there is no nonlinear advection (a2 = 0), and the domain is
not “too large.”

Proof. Consider the approximate solution h.. The definition of £.(7") combined
with the linear-in-time bound (3.25) implies

(4.14) /h (z,T) dz < &.(0 )—|—KT—|—‘a1‘/h2 dx + |az|||w] co Me,

where M. = [ hgdz. Applying Poincaré’s inequality (A.2) to v. = h. — M. /|Q] and
using [ h2dx = [v2dx+ MZ2/|Q| yields

(azo _ IalHQI / h? ) dz < €.(0) + K Te joc + |a21||é\4€ + |ag|||w]| o M.
Ifhpe=C.=C+ €% and as = 0 (hence K = 0), this becomes
(a20 _ \a1HQ| / h ) dz < (a1 |a1|)022|9\.

If a; > 0 and |Q]? < ag/ay, then fha)m z,T) de = 0 for all T € [0,T% 10c), and
this, combined with the continuity in space and time of h., implies that h. = C.
on Qr, .. Taking the sequence {e} that yields convergence to the solution h of
Theorem 1, h = C on Qr,,,. O
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5. Strong positivity of solutions.

PROPOSITION 5.1. Assume the initial data ho satisfies ho(x) > 0 for all x € w C
Q, where w is an open interval. Then the weak solution h from Theorem 1 satisfies

(1) h(z,T) > 0 for almost every x € w, for all T € [0, Tjoc);

(2) h(z,T) >0 for all z € w, for almost every T € [0, Tjoc).

The proof of Proposition 5.1 depends on a local version of the a priori bound
(3.24) of Lemma 3.1.

LEMMA 5.1. Let w C § be an open interval and ¢ € C%(Q) such that ¢ > 0 on
w, supp ¢ =w, and (¢*) =0 on ON. If w = Q, choose ¢ such that {(—a) = ((a) > 0.
Let € := (%,

If the initial data hg and the time Ti,. are as in Theorem 1, then for all T €
[0, Tioc] the weak solution h from Theorem 1 satisfies

(5.1) /Qg(x) ﬁ dx < oco.

The proof of Lemma 5.1 is given in Appendix A. The proof of Proposition 5.1 is
essentially a combination of the proofs of Corollary 4.5 and Theorem 6.1 in [8] and is
provided here for the reader’s convenience.

Proof of Proposition 5.1. Choose the localizing function ((x) to satisfy the hy-
potheses of Lemma 5.1. Hence, (5.1) holds for every T' € [0, Tjoc)-

First, we prove h(x,T) > 0 for almost every x € w, for all T' € [0, T},c]. Assume
not. Then there is a time T' € [0, Tjoc] such that the set {z | h(z,T) = 0} Nw has
positive measure. Then

oo>/§(x)m dxz/ {(x)ﬁ dz = 0.
Q {h(-,T)=0}Nw

This contradiction implies there can be no time at which i vanishes on a set of positive
measure in w, as desired.

Now, we prove h(z,T) > 0 for all z € w, for almost every T € [0,T},.]. By (3.12),
hew(-,T) € L?(Q) for almost all T € [0, Tyoc); hence h(-,T) € C3/2(Q) for almost all
T € [0,Tioc]. Assume Ty is such that h(-,Tp) € C%/2(Q) and h(zg,Tp) = 0 at some
To € w. Then there is an L such that

h(z,To) = |h(z,To) — h(xo, To)| < Llx — x0]>/2.

Hence
o /Q%m da > %/walx — 29 ~Y/? dz = oo

This contradiction implies there can be no point xg such that h(zg, Tp) = 0, as desired.
Note that we used £ > 0 on w and z¢ € w to conclude that the integral diverges. O
We close our discussion with illustrations of positivity and long-time existence via
numerical simulations of the initial value problem for different regimes of the PDE.
Figure 2 considers the PDE with no advection, k¢ + (h®(hzzs + 16 hy))r = 0. The
PDE is translation invariant in z, and constant steady states are linearly unstable.
As a result, any nonconstant behavior observed in a solution starting from constant
initial data would be due to growth of round-off error. For this reason, nonconstant
initial data is chosen: ho(z) = 0.3+ 0.02 cos(z) +0.02 cos(2z). The L? and H' norms
of the resulting solution appear to be converging to limiting values as time passes,
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F1G. 2. The evolution equation with no linear or nonlinear advection, hi+(h3(hggz +16 hy))z =
0, corresponding to ap =1, a1 = 16, and az = a3z = 0. The initial data is ho(z) = 0.340.02 cos(z)+
0.02 cos(2z). Left plot: the solution at times t = 0 (dashed line), t = 12,12.5,13,15 (solid lines),
and t = 140 (heavy line). Right plot: the L? and H' norms plotted as a function of time.
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F1a. 3. The evolution equation with nonlinear advection but no linear advection, ht+(h3(hzzz+
16 hy — 8cos(x)))z = 0, corresponding to agp = 1, a1 = 16, a2 = 8, and az = 0. The initial data is
ho(z) = 0.3. Left plot: the solution at times t = 0 (dashed line), t = 0.5,1,2,10 (solid lines), and
t = 3000 (heavy line). Right plot: the L? and H' norms plotted as a function of time.

and the long-time limit of the solution appears to be four steady state droplets of
the form acos(4x + ¢) + b for appropriate values of a, ¢, and b. Like the PDE, the
simulation shown respects the symmetry about z = 0 of the initial data.

Figure 3 shows the evolution from constant initial data for the PDE with nonlinear
advection but no linear advection: hy + (h%(hgzs + 16 hy — 8 cos(z))), = 0. The long-
time limit appears to be a steady state which is zero (or nearly zero on [—,0] ) with
a droplet supported within (0, 7) and centered roughly about the midpoint (z = 7/2).

Finally, Figure 4 shows the evolution resulting from the same constant initial
data for the PDE with both linear and nonlinear advection: h; + (h3(hzgs + 16 hy —
8cos(x)))s + 3h, = 0. The long-time limit appears to be a strictly positive steady
state.

We close by noting that the PDE considered in Figure 4 corresponds to coefficient
as = 3 in the PDE (1.8). As we increase the value of ag we find there appears to be a
critical value past which the solution appears to converge to a time-periodic behavior
rather than a steady state.
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Fi1a. 4. The evolution equation with both linear and nonlinear advection, ht+(h3(hzzz+16 hy—
8cos(x)))z + 3he = 0, corresponding to ap = 1, a1 = 16, ag = 8, and a3 = 3. The initial data is
ho(z) = 0.3. Left plot: the solution at times t = 0 (dashed line), t = 0.5,1,2,4 (solid lines), and
t = 20 (heavy line). Right plot: the L? and H' norms plotted as a function of time.

Appendix A. Proofs of a priori estimates. The first observation is that the
periodic boundary conditions imply that classical solutions of (3.17) conserve mass:

(A1) / hse(x,t) de = / hoe(z)de =M. <oo Yit>0.
Q Q

Further, (3.21) implies M. — M = [ hg as £,6 — 0. The initial data in this article
have M > 0; hence M. > 0 for § and ¢ sufficiently small.

Also, we will relate the LP? norm of h to the LP norm of its zero-mean part as
follows:

p—1
h(@)] < (@) — 2]+ & = nlp < 2t ol + (&) M,

where v := h — M/|Q|, and we have assumed that M > 0. We will use the Poincaré
inequality which holds for any zero-mean function in H'(f),

(A.2) [olly < baflvallp, 1 <p<oo,

with bl = |Q|p
Also used will be an interpolation inequality [27, Theorem 2.2, p. 62] for functions
of zero mean in H!():

(A.3) [0[|5 < by [[va|l5” ol =7,
where r > 1, p > r,

a= 1?::75‘7 by = (1+7/2)".

It follows that for any zero-mean function v in H!(£2)
(A4) [l < bsllvellz, = NIAllE < ballhally + b5 M2,
where

{b1 QPP if 1<p<2,
3 =

p—1
=210 b= ()
BPTD2h, it 2<p<oo, RSN
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To see that (A.4) holds, consider two cases. If 1 < p < 2, then by (A.2), ||v||, is
controlled by ||vs|l,. By the Holder inequality, vz, is then controlled by ||vg|l2. If
p > 2, then by (A.3), ||v||, is controlled by |jv||$|[v]|5~, where a = 1/2 — 1/p. By
the Poincaré inequality, ||v||3~ is controlled by ||v.|[3 .

Proof of Lemma 3.1. In the following, we denote the classical solution hs. by h
whenever there is no chance of confusion.

To prove the bound (3.23) one starts by multiplying (3.17) by —h,., integrating
over Qr, and using the periodic boundary conditions (3.18), which yields

(A.5) /h2 x,T)dz + ag //fés .. drdt

/ ho .. L(x)dx —ay / fe(h)hgphgey dxdt 4+ day / him dxdt
QT

— G2 / fés rrr dxdt.

By Cauchy and Young inequalities, due to (A.2)—(A.4), it follows from (A.5) that

(A6) 1 / B2(2,T) da + % / o (R)R2,., dadt
Q

S%/hOEzdﬂf‘FCs/ h dﬂ?dt—l—@/ max{ (/hzdx)} dt,
Qr

where

o2
c1 = b%/8—|—b4/2,62 = M(?s b5/2,63 = ﬁ +5|CL1|,

cy = —cl + a2 Hu/||2 by + = CQ + a2 Hu/||2 bs M3 + 5“2 [|lw 3.

Now, multiplying (3.17) by G%.(h), integrating over Qr, and using the periodic
boundary conditions (3.18), we obtain

(A7) /G(;E(h(x,T))dx—i—ao // hZ, dxdt = / Gse(hoe)dz + ax // h2dxdt
¢ Qr ¢ Qr
—ag/ (Gse(h))y dxdt + ag // w'hy dadt.
Qr Qr

By the periodic boundary conditions, we deduce

/G6a (z,T) d:c+ao//h dxdt
(A.8) /G(;s hos)d$—|—65/ HlELX{ /h2 x,t) da:} dt,
0
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where ¢ = |ai| + |az|||w'||2. Further, from (A.6) and (A.8) we find

/h2dx+2c3/G5€ dx+a0/ fse(h mdxdt</h0”d
(A.9) QCs/G(;E hOE)dx—Fcﬁ/ max{ (/h x,t) da:) }dt,

where ¢g = 2¢3¢5/ag + 2¢4. Applying the nonlinear Gronwall lemma [15] to

T
v(T) <wv(0)+ CG/O max{1,v3(t)} dt
with v(t) = [(h2(z,t) + 2c3/a0 Gse(h(x,t))) dz yields
(A.10) / hZ(z,t) + 22 Gse(h(z,t)) dx
Q

< \/—max{ /Q(hOM( ) + 222G (ho o (2)) da:} — Ky, < 00

for all t € [0, Tse joc), Where

—2
(A.11) Tse.loc == 4%5 min {1, (/ (hg,s)r(x) + 22 Goe(hoe())) da:) } .
Q

Using the § — 0,6 — 0 convergence of the initial data and the choice of 8 € (0,2/5)
(see (3.21)) as well as the assumption that the initial data h¢ has finite entropy (3.11),
the times Tse 10 converge to a positive limit, and the upper bound K in (A.10) can
be taken finite and independent of § and ¢ for ¢ and e sufficiently small. (We refer the
reader to the end of the proof of Lemma 5.1 in this appendix for a fuller explanation
of a similar case.) Therefore there exists dgp > 0 and g9 > 0 and K such that the
bound (A.10) holds for all 0 < § < §p and 0 < € < g¢ with K replacing K. and for
all

(A.12) 0<t<Toe =1 lim Ty oc.

e—0,0—0

Using the uniform bound on [ hZ that (A.10) provides, one can find a uniform-
in-0-and-¢ bound for the right-hand side of (A.9), yielding the desired a priori bound
(3.23). Similarly, one can find a uniform-in-§-and-e¢ bound for the right-hand side of
(A.8), yielding the desired a priori bound (3.24).

To prove the bound (3.25), multiply (3.17) by —aghgz —a1h — asw, integrate over
Qr, integrate by parts, use the periodic boundary conditions (3.18), and use the mass
conservation (see (A.1)) to find

855 / f56 aOhrrm + CLlh —+ asw ( ))2 dxdt
Qr

(A.13) < €5:(0) + azas]||w’] (|Q|3/2\/K1 + M) T.
Hence the desired bound (3.25) is obtained if the constant

K3 = |azas||w']| o (19132 /K1 + M).
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The time T}, and the constants K7, Ks, and K3 are determined by dg, €9, ag, a1, az,
w', 19|, and hg. 0

Proof of Lemma 3.2. In the following, we denote the positive, classical solution
he by h whenever there is no chance of confusion.

Multiplying (3.17) by (G(a) (h))', integrating over Qr, taking § — 0, and using
the periodic boundary conditions (3.18) yields

1 x, T + ag xdt + ag——=— - xdt
(A.14) /G@( (,T))d //ha L dzd "‘““"’//ha 2t dad

/ G (hoe) dz + ax / hh2 dwdt — 22 w” ddt.

Case 1. 0 < o < 1. The coefficient multiplying [ h*~2h% in (A.14) is positive
and can therefore be used to control the term [[ h®h2 on the right-hand side of
(A.14). Specifically, using the Cauchy—Schwarz inequality and the Cauchy inequality,

Al15) ay hoh2 drdt < weli=a) ho2hd dadt + s hot2 dadt.
x 6 2apa(l—a)
Qr

Qr

Using the bound (A.15) in (A.14) yields

(A.16) / G (h(x,T)) dx + ag / / heh2, drdt + ao 20 / / I
¢ Qr Qr
« 30«% « az w” oo «
S/QGg )(hOE)dCE-Fm//h +2 dl‘dt-f—%//h +1d$dt.
Qr

Qr
By (A.4),
/G@ x,T)) dz + ag // heh2, dxdt+a0@/ he=2h4 dadt
Qr
S+1
(A.17) / G (ho.) da + dl/ Inax{ </ h? da:) }dt,
where

dq =b4( 3af )+ |a2|{\$;|\oo) + bs ( 3af Ma+2+ \a2\||w Il oo Ma+1)

2apa(l—a 2apa(l—a)

Using the Cauchy inequality in (A.9) and taking 6 — 0 yields

(A.18) / hZ dzx + ag / fe(h)h2,, dxdt
Q

g/hgwdx+2a1 //h3h2 dodt + 2021 / h? dadt.
Q

Qr Qr
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Applying the Cauchy—Schwarz inequality and (A.4) yields

/hid:ﬁ‘FaO//fs(h zzzdmdt</h051d:p
@ Qr
T -5
+ apa(l—a) 1 o // ho— 2h4 dl’dt+d2/ max (/ h2 dﬁ) dt,
0

where

6 2a2 2 2
dy = by (s + 2 /|2, ) + b ( ity M3+ 222 o2, MP).

Adding nga) (h(z,T)) to both sides of (A.18), ag [[ h®hZ, to the resulting right-
hand side, and using (A.17), we obtain

(A.19) /Q h2(z,T) dx + /Q G (h(x,T)) dx + ag / / fo(h)h2,, dxdt
Qr

T -3
/hgszdx+ G hOE)dCC+d3/ max{ </h2dx> },
0

where d3 = dy + da. Applying the nonlinear Gronwall lemma [15] to
T
o(T) < v(0) + dy / max{1, vi=/2()} dt
0
with o(T) = [(h2(z, T) + G (h(z,T))) dx yields

(A.20) /Q (h2(z, T) 4+ G (h(z,T))) da

1

< 46-a max {1, / (ho,si(aj) + Ggo‘)(ho,s(a:))) dx} =K., <o
Q

for all T

6—a
2

0<T<T), = s mind 1, ( / (hoe2(x) + G (ho . (x))) da:)
Q

The bound (A.20) holds for all 0 < € < g9, where ¢ is from Lemma 3.1, and for all

t < min{Tjoc, T, s(lgc} where T, is from Lemma 3.1.

Using the € — 0 convergence of the initial data and the choice of 6 € (0,2/5) (see

(3.21)) as well as the assumption that the initial data ho has finite a-entropy (3.27),
the times TE( 130 converge to a positive limit and the upper bound K in (A.20) can

be taken finite and independent of £. (We refer the reader to the end of the proof
of Lemma 5.1 in this appendix for a fuller explanation of a similar case.) Therefore

there exists aéa) and K such that the bound (A.20) holds for all 0 < € < 5((30‘) with K

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1848 MARINA CHUGUNOVA, M. C. PUGH, AND R. M. TARANETS

replacing K. and for all

(A.21) 0<t< 7% .= min {Tzoc, 10 | hm 7 } ,

loc g,loc

where T}, is the time from Lemma 3.1. Also, without loss of generality, aéa) can be

taken to be less than or equal to the g¢ from Lemma 3.1.
Using the uniform bound on [ k2 that (A.20) provides, one can find a uniform-in-e
bound for the right-hand side of (A.17), yielding the desired bound

(A.22) /G§a>(h(x,T))dx+ao //h“hz dwdt + ag 2z //h“ 2pd dedt < K,
Q

Qr

which holds for all 0 < & < & and all 0 < T < T\*.

It remains to argue that (A.22) implies that for all 0 < e < &' that h?/*™ and
h&/4H12 are contained in balls in L2(0, T; H2(Q)) and L2(0, T; WE(2)), respectively.
It suffices to show that

// (h?/2+1)2 dedt < K, // (h?/4+1/2)4 dndt < K
Qr o Qr :

for some K that is independent of ¢ and 7. The 1ntegra1 [f(h O‘/ZH)M is a linear

combination of [[h* 2h%, [[h* 'h2hye, and [[ h*h2,. Integration by parts and
the periodic boundary conditions imply

(A.23) Lo / / R 2hi ddt = / / R h2 hyy dadt.
Qr Qr

Hence [[(hS/**1)2

the two integrals are uniformly bounded independent of € and T'; hence f [(h
is as well, yielding the first part of (3.29).

is a linear combination of [[ h*~2h%, and [[ h*h2,. By (A.22),
a/2+1)

rT

rr

The uniform bound of [ o/4+1/ 2)4 follows immediately from the uniform bound
of [[ h*=2h}, yielding the second part of (3.29).

Case 2. —% < a < 0. For a < 0 the coefficient multiplying [[ h®~2h% in (A.14) is
negative. However, we will show that if « > —1/2, then one can replace this coefficient
with a positive coefficient while also controlling the term [ h*hZ on the right-hand
side of (A.14).

Applying the Cauchy—Schwarz inequality to the right-hand side of (A.23), dividing

v v/ [[ h*2h%, and squaring both sides of the resulting inequality yields

(A.24) / h " 2hg dedt < 2555 / hoh2, dxdt  Va < 1.
Qr
Using (A.24) in (A.14) yields

(A.25) / G (h(z,T)) dzx + ag 12> / hh2, dxdt
Q
Qr

< / G (ho.) dz + ay //h"‘hi dudt + ‘“21|\w”|\oo//ha+l ddt.
¢ Qr Qr
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Note that if & > —1/2, then all the terms on the left-hand side of (A.25) are positive.
We now control the term [ h*h2 on the right-hand side of (A.25).

By integration by parts and the periodic boundary conditions,

(A.26) / / heh2 dadt = — / / ROt b, dadt.
Qr

Applying the Cauchy inequality to (A.26) yields
(A27) / / heh2 dadt < / / ORI o2, 4 gl b2 dadt.

Using inequality (A.27) in (A.25) yields

2(1—a)

(A.28) /G"‘) h(z,T))dz + ao 1+2a/ hoh2,, dxdt

< [ 6 hy o+ // el e el o )

Adding

a0(1+2;é)(170¢) / ha72h4 dudt
Qr

to both sides of (A.28) and using the inequality (A.24) yields

(A.29) / G (h(x,T))dx+ao411+Qg§ / hh2, dxdt
Q

+ 2o(l+2a)(1—e) / / ho~2h4 dadt < / G (ho.)
aj(l—«a a a o
+ gl //h 2 dadt + 122L || ”||oo//h 1 dadt.

Using (A.29) and (A.4) yields

/ G (h(z,T)) dz + / / 2002 g2, 4 U o2t gy
Q

T S+l
(A.30) G(O‘ (hoe) dz + 61/ max{ </ h2 dx) } dt,
0

where

_ af(l-a) la ai(1—a) at+2 | la atl
e1 = ba(zeritseyiirar + 2t |w”[loo) +bs (srrirseyiiraye ME T2+ [ [l M2TT).
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Recall the bound (A.18). As before, by the Cauchy inequality,

(A.31) 20 / / h3h2 dadt < %lr20)0-0) / ho=2ht dadt

Qr
3611 8—a
+ a0(1+2a)(1 = //h dxdt.

Using (A.31) in (A.18) yields

[ e ra [[ rom,, i< [ 3., ds
Q Q
QT
ao(l+20¢)(l Ot) //ha 2h4 dmdt+62/ max{ (/ h2 dx) } dt’

36a} 2a2 36a} _ 2a2
where 3 = ba(raaiiay T ac ' 11%) +bs (rrgaaya=ay ME+ T2 w5 M2).

Just as (A.17) and (A.18) yielded (A.19), inequality (A.30) combined with the above
inequality yields

(A.32) /thdeJr/Ga) a:T))da:+a0/ fo(h)h2,, dxdt

-2
/hOEzdx+/Go‘) hOE)dereg/ Inax{ </ h2 dx) }

where e3 = e; + e3. The rest of the proof now continues as in the 0 < o < 1 case.
Specifically, one finds a bound

(A.33) /Q (h2(2,T) + G (h(z,T))) dz

1

<45 max {1, [ (0.0 + G o ) do = K. < oc
Q

for all T
—-o3=
0<T < TL), = =gy min {L ( /Q (ho,ce? (@) + GL (hoo(2))) dx) } .

The time Tl(ooé) is defined as in (A.21), and the uniform bound (A.33) used to bound
the right-hand side of (A.30) yields the desired bound

/G“) 2, T)) dz + 250128 / h*h2, dzdt
(A.34) + 2o(+2a)(1 o) / / R 2Rl dedt < Koo O

Proof of Lemma 5.1. In the following, we denote the positive, classical solution
he constructed in Lemma 3.3 by h (whenever there is no chance of confusion).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



THIN FILM EQUATION WITH CONVECTION 1851

Recall the entropy function Gs.(z) defined by (3.22). Multiplying (3.17) by
&(z)Gj. (hse), taking § — 0, and integrating over Qr yields

/f h(z,T)) dx—/f hgsda:——agf E(x)GL(h)hypdxdt

4 / F (1) (@0hazs + arh + azw!)(€'GL(R) + €G” (W)hy) ddt

= ag //5 G.( dxdt+/ & fe(h h)(aohyze + arhs + azw’) dodt
(A35) + / fhz (aohrm +arhy + agw’) dedt =: 11 + I + I3.
Qr

One easily finds that for all e > 0 and all z > 0

[f:(2)GL(2)] < 32, |fL(2)GL(2)] < 2,

‘/ F(s)GL(s)ds| < 3242 W0 <e < (VBE - 8)/4
0
Using these bounds and recalling ¢ = ¢*, we bound |I5:

Bl < [ (02, + 7 [+ el +GE 4+ ] (4 +12)) dac
(A.36) +2|a2||‘w/|‘oo//g3|gw|h dzxdt + %|a1|// €| dadt,
Qr Qr

where 71 = max{102a9,6|a1|} and 0 < £ < (v/33 — 3)/4. Now, integrating by parts
in I3, we deduce

Is + ag / / €h?, dxdt < o / / [P+ Cleoal + ¢ B2 dadt
QT Qr
(A.37) +4faal (10 o+ ) [ (6%1601+ )

where 2 = max{6ay, |a1|}. Using bounds (A.36) and (A.37), we obtain that

(A.38) /Q £G(he(x,T)) dz < /Q €G- (hos) dx + C,

where C' > 0 is independent of € > 0. Using the fact that # was chosen so that
0 < 2/5 <1/2, we have [{(z) Ge (hoe(z))| < &(2)(Go(ho(x)) + ¢) < C(Go(ho(x)) + ¢)
almost everywhere in = and for all € < 9. To finish the proof, we apply Fatou’s
lemma to the left-hand side and the Lebesgue dominated convergence theorem to the
right-hand side of (A.38). O
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Appendix B. Results used from functional analysis.
LEMMA B.1 (see [28]). Suppose that X, Y, and Z are Banach spaces, X €

Y CZ, and X and Z are reflexive. Then the embedding {u € LP°(0,T; X) : Ou €
LP(0,T;7),1 <p; < o00,i=0,1} € LP°(0,T;Y) is compact.

LEMMA B.2 (see [38]). Suppose that X, Y, and Z are Banach spaces and X €

YC Z. Then the embedding {u € L*(0,T;X): Qu € L?(0,T;Z), p > 1} € C(0,T;Y)
18 compact.
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